

Journal of Theory and Research in Islamic Elementary School Education

https://ejournal.staimabayang.ac.id/index.php/jtriese

The Effect of Experimental Methods on Science Learning Outcomes in Students

Guesa Maiwinda¹, Ratih Asperina¹, Mona Yulia Zulfa²

¹STAI Madrasah Arabiyah Bayang Pesisir Selatan Sumatera Barat, Indonesia ²STIT Syekh Burhanuddin Pariaman, Indonesia

Article Information:

Received April 15, 2025 Revised May 28, 2025 Accepted June 25, 2025

Keywords: Experimental

Abstract

Natural Sciences is not only a collection of objects or living things, but also about how things work, how to think, and how to solve problems. This study aims to determine the effect of the experimental method on the learning outcomes of Natural Sciences material on the relationship between natural resources and the environment, technology, and society in elementary school students. This study employs an experimental research design. The research design used in this study is the "One Group Pretest Posttest Design." The population in this study consists of all students. This sampling technique is referred to as saturated sampling. The analysis results show that the percentage of methods, learning outcomes, Sciences learning achievement in Natural Sciences is above average. It is also evident that the pretest has a lower percentage of achievement than the posttest, with the respective percentages of achievement for each test (pretest-posttest) being 6.25% and 75%. The results of this study indicate that there is a significant effect of applying the experimental method on the learning outcomes of Sciences material on the relationship between natural resources, the environment, technology, and society among students.

INTRODUCTION

The subject of Natural Sciences is related to systematically finding out about nature, so that Natural Sciences is not only the mastery of a collection of knowledge in the form of facts, concepts, or principles, but also a process of discovery (Iskandar & Kusmayanti, 2018; Lubis et al., 2023; RI, 2006). Natural Sciences is a body of knowledge that involves systematically organized facts and demonstrates the application of general laws obtained through study and practice (Ginting et al., 2025).

Natural science obtains truth about natural facts and phenomena through inquiry (discovery), because natural science is related to facts, concepts, principles, and also the process of discovery itself (Hidayat, 2021; Kusmiati et al., 2020; Utami, 2013). Discoveries are obtained through experiments that can be conducted in laboratories or in the natural environment (Handayani, 2018).

Based on this statement, not all Natural Science subject matter, especially material on the relationship between natural resources and the environment, technology, and society, can be viewed alone, but needs to be practiced and tested.

Maiwinda, G., Asperina, R., Zulfa, M. Y. (2025). The Effect of Experimental Methods on Science How to cite:

Learning Outcomes in Students. Journal of Theory and Research in Islamic Elementary School

Education, 1(1), 35-43.

E-ISSN:

The Institute for Research and Community Service Published by:

Students need to observe directly in the learning process because the focus of the Natural Sciences subject is on various events or occurrences found in the students' environment (Lestari et al., 2021; Sabrina et al., 2024; Septiani & Fatonah, 2024; Syafril et al., 2021). The Natural Sciences subject requires a real understanding of various events in the surrounding environment or society. This means that educators must be able to help students understand a subject matter or the elements within the subject matter in accordance with the environmental conditions of the students' lives.

Educators have tried to get students to focus on learning again by using warnings or threats, known as punishment. This can make students quiet for a moment, but after that they become noisy again. This situation continues, causing learning objectives to not be maximized and the learning outcomes achieved by students to remain unsatisfactory, as shown in the following table:

Table 1. Percentage of Daily Test Completion in Science Learning

Participants

Farticipants						
Student		Minimum		Completion		
No	Code	Passing	Score	Completed	Not	
		Criteria		Completed	completed	
1.	Α	75	78	$\sqrt{}$		
2.	DR	75	44			
3.	GK	75	85	$\sqrt{}$		
4.	LF	75	76			
5.	MAA	75	82			
6.	NA	75	78			
7.	NO	75	65			
8.	PE	75	54			
9.	R	75	80			
10.	RR	75	54			
11.	SAP	75	65			
12.	SA	75	78			
13.	SH	75	82			
14.	SR	75	70			
15.	VM	75	72			
16.	WPA	75	65			
	Total		1274			
Average			70,77		-	

The data in the table above shows that out of 16 students, only 8 obtained science scores above the minimum passing grade. Therefore, it is necessary to develop a learning method that is not boring and makes students more interested, by creating a learning environment that is close to the real world.

METHODS

This study is a quantitative research using an experimental design. Experimental research is a research method used to investigate the effect of a specific treatment on another variable under controlled conditions (Katimo et al., 2016; Khalida & Astawan, 2021; Nurqomariah et al., 2017; Rahayu et al., 2020; Rukin, 2019; Rukin & Karinda Tifani, 2023; Sugiyono, 2018; Wahyuni et al., 2017; Engkizar et al., 2025; Oktavia et al., 2025). Research design is the plan for how the research will be conducted. The research design used in this study is the "One Group Pretest Posttest Design." Suryabrata

explains that in this design, a single group of subjects is used. First, measurements are taken, then the treatment is applied for a specific period, followed by a second round of measurements. Simply put, Suryasubrata describes the research design used as follows:

Table 2. Research Design Pattern: One Group Pretest-Posttest Design

Pretest	Treatment	Posttest
T1	X	Т2

Explanation:

T1 = pretest before treatment is given

T2 = posttest after treatment is given

X = treatment

The instruments used in this study were learning outcome tests, which were used to measure the abilities, understanding, and skills of the students. There were two types of tests in this study: pre-tests and post-tests. The pre-tests were conducted before the lessons without using experimental methods, while the post-tests were conducted after the lessons using experimental methods.

RESULT AND DISCUSSION

Based on research conducted in grade IV of Elementary School 16 Simpang Haru, Padang Timur, Padang City, data was obtained on the learning outcomes of students in natural sciences. Students were given a pretest on the subject of the relationship between natural resources and the environment, technology, and society. Before teaching students using the experimental method, they were first informed about the subject matter to be studied.

The aspect measured in this study was learning outcomes in the cognitive domain, which was conducted by administering pretest and posttest questions to 16 students. The data obtained from the pretest and posttest questions were presented in the form of student scores ranging from 1 to 100. The final test data obtained and the initial test data (pretest) were analyzed to determine the percentage of students who passed and failed, the average score, the highest score (X_{max}) , and the lowest score (X_{min}) . The results obtained from the pretest and posttest are shown in table 3 below:

Table 3. Pre-test and Post-test Data in Science Learning

Statistical data	Pretest	Posttest
interval	(person)	(person)
16-21	-	-
22-27	-	-
28-33	1	-
34-39	2	-
40-45	3	-
46-51	4	-
52-57	-	-
58-63	3	-
64-69	-	1
70-75	2	2
76-81	1	3
82-87	-	4
88-93	-	5
94-100	-	1

Completion and percentage	Completed 1 person (6,25%)	Completed 12 person (75%)
	Not Completed 15 person (93,75%)	Not Completed 4 person (25%)
	50,93	83,68
xmaks	80	97
xmin	28	64

Based on the table above, it can be seen that in the pretest, the average score of the students was 50.93, with the highest score obtained by a student being 80 and the lowest score being 28. Of the 16 students who took the pretest, only one passed with a percentage of 6.25%, while 15 students failed, representing 93.75%.

Meanwhile, in the final test (posttest), the average score of the students was 83.68, with the highest score being 97 and the lowest score being 64. Of the 16 students who took the final test, 12 passed with a percentage of 75%, and 4 students failed, which is 25%. From the completion rate of Natural Sciences learning above, it can also be seen that the pretest had a lower completion rate than the posttest, so the completion rates for each test (pretest-posttest) were 6.25% and 75%, respectively.

Data analysis was conducted to determine student learning outcomes by calculating the average score, which was useful for describing the learning outcomes of students in Natural Sciences after using the experimental method in teaching Natural Sciences to fourth-grade students at State Elementary School 16 Simpang Haru, Padang Timur District, Padang City. Analysis of student learning outcomes in Natural Sciences was conducted by determining the average pretest and posttest scores.

Determining the average pretest and posttest scores

To determine the average pretest and posttest scores, the formula proposed by Sudijono is used as follows:

$$\overline{\mathbf{x}} = \frac{\sum \mathbf{X}}{\mathbf{N}} \dots (4.1)$$

Description:

= Average score

 $\sum X$ = Total score

= Number of students

Average pretest score:
$$\overline{x} = \frac{\sum X}{N} = \frac{815}{16} = 50,93$$

$$\overline{x} = \frac{\sum X}{N} = \frac{1339}{16} = 83,68$$

From the results of the average pretest and posttest calculations above, we can see a significant difference in learning outcomes. To find out the difference between the average pretest and posttest scores, see the following table.

Table 4. Difference in Pretest and Posttest Average Scores

\overline{x}		Difference	Highest Value	Lowest Value
Pretest	50,93	32,73	80	28

Posttest	83,68	97	64

From the table above, it can be seen that there is an increase in the average score between the pretest and posttest. Thus, it can be concluded that there is a difference in the science learning outcomes of fourth-grade elementary school students after applying the experimental method.

1. Calculate the effectiveness of treatment from the study using the formula:

$$t_0 = \frac{MD}{SEMD} \tag{4.2}$$

Table 5. Student Learning Scores after Pretest and Posttest using the Experimental Method

Subject	Pre-test	Post-test	Gain/difference (d)	Gain/difference (d^2)
,	score	score	(posttest dan pretest)	(posttest dan pretest)
1	58	92	37	1369
2	48	90	42	1764
3	28	85	57	3249
4	58	97	39	1521
5	73	89	16	256
6	53	82	29	841
7	46	73	27	729
8	73	80	7	49
9	43	87	44	1936
10	35	80	45	2025
11	45	90	45	2025
12	48	80	32	1024
13	80	90	10	100
14	50	73	23	529
15	45	87	42	1764
16	35	64	29	841
N = 16	815	1339	$\Sigma d = 524$	$\sum d^2 = 20022$
1N - 10	$\bar{x} = 50,93$	$\bar{x} = 83,86$	<u>Lu - 324</u>	$\Sigma u = 20022$

Md
$$=\frac{\sum d}{N} = \frac{524}{16} = 32,75$$

To analyze the results of the experiment, a pretest-posttest one-group design was used with the following formula:

$$t0 = \frac{MD}{SE_{MD}}$$

$$SD_D = \sqrt{\frac{\sum D^2}{N} - (\frac{\sum D}{N})^2}$$

$$SD_D = \sqrt{\frac{20022}{16} - (\frac{524}{2216})^2}$$

$$SD_D = \sqrt{\frac{20022}{16} - (\frac{274576}{256})}$$

$$SD_D = \sqrt{1251,37 - 1072,56}$$

$$SD_{D} = \sqrt{178,81}$$

$$SD_{D} = 13,37$$

$$SE_{MD} = \frac{SD_{D}}{\sqrt{N-1}}$$

$$SE_{MD} = \frac{13,37}{\sqrt{16-1}}$$

$$SE_{MD} = \frac{13,37}{\sqrt{15}}$$

$$SE_{MD} = \frac{13,37}{3,87}$$

$$SE_{MD} = 3,54$$

$$t = \frac{MD}{SE_{MD}}$$

$$t = \frac{32,75}{3,54}$$

$$t = 9,25$$

$$t = 9,25$$
 (consulted with the t-value table)

t= 9,25 (consulted with the t-value table)

df or db = N-1 = 16-1 = 15. With a df of 15, we consult the "t" value table, both at a significance level of 5% (see Appendix 15).

By comparing the t-value obtained in the calculation (9.25) with the critical tvalue at the 5% significance level, we find that the t-value is greater than the critical t-value, indicating a significant difference.

2. Hypothesis testing

After testing the hypothesis using a t-test with the following statistical formulation, the hypothesis tested was:

 $H_{0=}$ accepted if $t_{calculate} < t_{table}$ H_1 = accepted if jika $t_{calculate} < t_{table}$

Explanation:

 $H_{0=}$ HypothesisNihil

 H_1 = Alternative Hypothesis

Df = N-1, 15 with Df equal to 15, the critical value of t in the table is as follows:

At a significance level 5 %: $t_{table} = 2,13$

Thus, $t_{calculate}$ (which is 9.25) is much greater than at a significance level of 5%. Therefore, the null hypothesis is rejected. This means that there is a significant difference in the mean between Variable 1 (variable X) and Variable II (variable Y). Their science scores have significantly improved or are better than before participating in the test program.

Students are given the opportunity to experience or do things themselves, follow a process, observe, analyze, prove, and draw their own conclusions about an object, so that the learning process does not seem monotonous and dominated by the role of the educator alone, meaning that in this learning process, students are required to engage in more learning activities and directly apply the concepts learned in Science education. Learning through the experimental method is a presentation of lessons where students conduct experiments by experiencing and proving for themselves what they have learned (Fauziah, 2022; Hamdani M et al., 2019; Hendawati & Kurniati, 2017; Pinasthika & Kaltsum, 2022; Ramayulis, 2016).

This can be seen in the steps of the experimental method according to

Ramayulis. First, explain the purpose of the experiment. The purpose of the experiment must be known in advance so that they know what problems are being solved in carrying out the experiment. Second, discuss in advance which problems are important to prioritize and which should be postponed. Third, before the experiment is conducted, the educator must first determine the necessary tools, the steps to be taken, the things to be recorded, and the variables that must be controlled. After the experiment is completed, the educator must: collect reports on the experiment, conduct a question-and-answer session about the process, and administer tests to assess the students' understanding (Ramayulis, 2016; Ath-Thukhi et al., 2025; Sari et al., 2025).

Based on the steps above, learning using the experimental method will make it easier for students to remember the concepts they have learned, and an active and joyful atmosphere will develop during the learning process. Cooperation among students will be dynamic, and a spirit of mutual assistance will emerge among all students. As a result, the knowledge they acquire will remain in their memory for a long time, have a better transfer effect, and enhance their critical thinking skills, thereby improving their learning outcomes.

Based on the researcher's observations during the study, it appears that in the teaching and learning process carried out in grade IV of Elementary School 16 Simpang Haru, Padang City, in accordance with the steps of the experimental learning method, students are more enthusiastic and interested in learning than before. This is because the teaching technique used was different from the usual approach. In this learning process, students worked in small groups, collaborating and sharing knowledge, while the teacher acted as a facilitator and motivator to empower the students' group work.

Based on the post-test data analysis, it was found that the classical learning completeness of the students had been achieved. The classical completeness percentage is defined as a completion rate of 75% or higher, which is the standard set by the school. The completion rate achieved in the post-test was 75%. This proves that classical learning completeness had been achieved at the school. When looking at the percentage of mastery, the students' results have improved from the pretest results. In the pretest, the mastery rate was 6.25% or 1 out of 16 students who took the pretest.

So, it can be concluded that applying this experimental method can improve students' thinking skills, creativity, and courage, which ultimately can improve their learning outcomes. This is evident from the 75% completion rate achieved in the posttest.

CONCLUSION

Based on the research results, data analysis, and discussion, it can be concluded that the implementation of the experimental method in the fourth grade of Elementary School 16 Simpang Haru, Padang Timur District, Padang City, has been carried out in accordance with the established plan, namely six sessions. Before starting the material, a pretest was conducted with an average score of 50.93. Out of the 16 students who took the test, one student achieved mastery, representing 6.25%. Meanwhile, in the posttest, the average score of the students was 83.68, and 12 students achieved mastery, representing 75%. Data analysis was conducted using a t-test. The calculated t-value was 9.25 and the critical t-value was 2.13. Since the calculated t-value was greater than the critical t-value (9.25 > 2.13) at a significance level of 0.05, the null hypothesis (H₀) was rejected, and the alternative hypothesis (Ha) was accepted. This indicates that the change in students' learning outcomes between the pretest and posttest was significant. Based on the research results, data analysis, and discussion, it can be concluded that there is a significant effect of applying the experimental method on the learning outcomes of science material on the relationship between natural resources, the

environment, technology, and society among fourth-grade students at Elementary School 16 Simpang Haru, Padang Timur District, Padang City.

REFERENCES

- Ath-Thukhi, A. M., Yana, Y. B., Sofiana, R., Rambe, A. A., & Wani, N. H. (2025). The Practice of Tikrar Method in Memorizing the Quran Junior High School Students in Indonesia. *Journal of Theory and Research Memorization Quran*, 1(1), 51-64.
- Engkizar, E., Jaafar, A., Muslim, H., Mulyadi, I., & Putra, Y. A. (2025). Ten Criteria for an Ideal Teacher to Memorize the Quran. *Journal of Theory and Research Memorization Quran*, 1(1), 26-39.
- Fauziah, F. (2022). Penerapan Metode Eksperimen Dalam Meningkatkan Hasil Belajar Ipa Pada Siswa Kelas V Sekolah Dasar. SEUNEUBOK LADA: Jurnal Ilmu-Ilmu Sejarah, Sosial, Budaya Dan Kependidikan, 9(2), 255–264. https://doi.org/10.33059/jsnbl.v10i2.6350
- Ginting, A. M. R., Siregar, I. M., Pratama, M. R., Syahputri, N., & Panggabean, H. S. (2025). Perkembangan ilmu alamiah dan sikap ilmiah dalam mempelajari ilmu alamiah. *Indonesian Research Journal on Education*, 5(1), 180–185. https://doi.org/10.31004/irje.v5i1.1929
- Hamdani M, Prayitno BA, & Karyanto P. (2019). Meningkatkan Kemampuan Berpikir Kritis Melalui Metode Eksperimen. *Proceeding Biology Education Conference* 16(1), 16(1), 139–145.
- Handayani, T. W. (2018). Peningkatan Pemahaman Konsep Ipa Menggunakan Model Pembelajaran Inkuiri Terbimbing Di Sd. Edutainment: Jurnal Ilmu Pendidikan Dan Kependidikan, 6(2), 130–153. https://doi.org/10.35438/e.v6i2.94
- Hendawati, Y., & Kurniati, C. (2017). Penerapan Metode Eksperimen Terhadap Pemahaman Konsep Siswa Kelas V Pada Materi Gaya Dan Pemanfatannya. *Metodik Didaktik*, 13(1), 15–25. https://doi.org/10.17509/md.v13i1.7689
- Hidayat, H. (2021). Pengaruh Metode Inkuiri terhadap Hasil Belajar Ilmu Pengetahuan Alam Siswa Kelas V di SD Negeri 3 Dompu Tahun Pembelajaran 2020/2021. JagoMIPA: Jurnal Pendidikan Matematika Dan IPA, 1(2), 99–112. https://doi.org/10.53299/jagomipa.v1i2.68
- Iskandar, R., & Kusmayanti, I. (2018). Pendekatan Science Technology Society: Ipa Di Sekolah Dasar. *Jurnal Ilmiah Pendidikan Guru Sekolah Dasar*, 2(02), 200–215. https://doi.org/10.31326/jipgsd.v2i02.129
- Katimo, Suparmi, & Sukarmin. (2016). Pengaruh Pembelajaran dengan Pendekatan Saintifik Menggunakan Metode Eksperimen dan Demonstrasi terhadap Prestasi Belajar dan Kreativitas ditinjau dari Sikap Ilmiah. *Inkuiri*, *5*(2), 87–93. https://doi.org/10.20961/inkuiri.v5i2.9482
- Khalida, B. R., & Astawan, I. G. (2021). Penerapan Metode Eksperimen untuk Meningkatkan Hasil Belajar IPA Siswa Kelas VI SD. *Jurnal Ilmiah Pendidikan Profesi Guru*, 4(2), 182–189. https://doi.org/10.23887/jippg.v4i2.35552
- Kusmiati, E., Kusnadi, D., & Aprilia Imani, R. (2020). Penerapan Metode Inkuiri Untuk Meningkatkan Hasil Belajar Siswa Pada Sub Pokok Bahasan Peristiwa Alam. *Jurnal Tahsinia*, 1(2), 117–127. https://doi.org/10.57171/jt.v1i2.187
- Lestari, Syafril, S., Latifah, S., Engkizar, E., Damri, D., Asril, Z., & Yaumas, N. E. (2021). Hybrid learning on problem-solving abiities in physics learning: A literature review. *IOP Conference Series: Earth and Environmental Science*, 1796(1), 12021. https://doi.org/10.1088/1742-6596/1796/1/012021
- Lubis, N., Mutiara, M., Asriani, D., Sakila, R., & Saftina, S. (2023). Pentingnya Peranan Ipa Dalam Kehidupan Sehari-Hari. *Jurnal ADAM : Jurnal Pengabdian Masyarakat*, 2(1), 119–123. https://doi.org/10.37081/adam.v2i1.1380
- Nurqomariah, N., Gunawan, G., & Sutrio, S. (2017). Pengaruh Model Problem Based

- Learning dengan Metode Eksperimen Terhadap Hasil Belajar IPA Fisika Siswa Kelas VII SMP Negeri 19 Mataram Tahun Pelajaran 2014/2015. *Jurnal Pendidikan Fisika Dan Teknologi*, 1(3), 173–179. https://doi.org/10.29303/jpft.v1i3.255
- Oktavia, G., Burhanuddin, B., Febriani, A., Asril, Z., & Syafril, S. (2025). Analysis of Quran Memorization Methods: Academically Talented Students. *Journal of Theory and Research Memorization Quran*, 1(1), 40-50.
- Pinasthika, R. P., & Kaltsum, H. U. (2022). Analisis Penggunaan Metode Eksperimen pada Pembelajaran IPA di Sekolah Dasar. *Jurnal Basicedu*, 6(4), 6558–6566. https://doi.org/10.31004/basicedu.v6i4.3304
- Rahayu, D., Kadir, M., & Saugi, W. (2020). Pengaruh Metode Eksperimen Terhadap Hasil Belajar Ilmu Pengetahuan Alam. *EDUCASIA: Jurnal Pendidikan* ..., *5*(3), 2. http://www.educasia.or.id/index.php/educasia/article/view/134
- Ramayulis. (2016). Profesi dan Etika Keguruan (: Kalam Mulia,), h. 1. Kalam Mulia.
- RI, D. (2006). Kurikulum Tingkat Satuan Pendidikan. In *Jakarta: Departemen Pendidikan Nasional* (Issue 1410302130). Direktorat Jendral Kelembagaan Islam.
- Rukin. (2019). Metode Penelitian Kuantitatif Kualitatif dan R&. In *Bandung: Alfabeta* (Vol. 3, Issue April). Alfabeta.
- Rukin, & Karinda Tifani. (2023). Motivasi Belajar Ilmu Pengetahuan Alam Pada Peserta Didik Kelas Ix Smp Putri Al Irsyad Al Islamiyyah Malang. *As-Salam: Jurnal Studi Hukum Islam & Pendidikan*, 12(2), 131–146. https://doi.org/10.51226/assalam.v12i2.518
- Sabrina, V., Alias, M. F. B., Lenggogeni, P., Oktavia, G., Asril, Z., & Rahman, I. (2024). Analysis of the Relationship between Self-Regulated Learning and Students' Quran Memorizing Activities in Junior High Schools. *Muaddib: International Journal of Islamic Teaching and Learning*, 1(1), 40–48. https://doi.org/10.63061/muijte.v1i1.12
- Sari, D. A., Dasrizal, D., Masyhudi, F., Darwati, D., Hamdi, I., & Desvia, L. (2025). Effectiveness of the Talaqqi Method in Memorizing the Quran. *Journal of Theory and Research Memorization Quran*, 1(1), 15-25.
- Septiani, S., & Fatonah, S. (2024). Analisis Keterampilan Proses Sains Peserta Didik Sekolah Dasar pada Pembelajaran Ilmu Pengetahuan Alam. *Mentari: Journal of Islamic Primary School*, 2(3), 194–204.
- Sugiyono. (2018). Metode Penelitian Kombinasi. Alfabeta. In *Metode Penelitian Kualitatif* (Vol. 28, Issue 17, p. 624). Gita Lentera.
- Syafril, S., Asril, Z., Engkizar, E., Zafirah, A., Agusti, F. A., & Sugiharta, I. (2021). Designing prototype model of virtual geometry in mathematics learning using augmented reality. *IOP Conference Series: Earth and Environmental Science*, 1796(1), 12035. https://doi.org/10.1088/1742-6596/1796/1/012035
- Utami, S. (2013). Penggunaan Metode Inquiri Untuk Meningkatkan Aktivitas Peserta Didik Pada Pembelajaran Ilmu Pengetahuan Alam. *J Conserv Dent. 2013*, 16(4), 2013. https://doi.org/10.26418/jppk.v2i10.3580
- Wahyuni, R., Hikmawati, H., & Taufik, M. (2017). Pengaruh Model Pembelajaran Inkuiri Terbimbing dengan Metode Eksperimen terhadap Hasil Belajar Fisika Siswa Kelas XI IPA SMAN 2 Mataram Tahun Pelajaran 2016/2017. *Jurnal Pendidikan Fisika Dan Teknologi*, 2(4), 164–169. https://doi.org/10.29303/jpft.v2i4.308

Copyright holder:

© Maiwinda, G., Asperina, R., Zulfa, M. Y.

First publication right:

Journal of Theory and Research in Islamic Elementary School Education

This article is licensed under:

CC-BY-SA